
Metriplectic dynamics:

A framework for kinetic theory and numerics

Eero Hirvijoki?, Michael Kraus†, and Joshua W. Burby‡

January 12, 2018

?Princeton Plasma Physics Laboratory
†Max Planck Institut für Plasma Physik
‡Courant Institute of Mathematical Sciences



Motivation: EXASCALE COMPUTING

• EXASCALE IS COMING: The near-future increase in
computational resources is expected to enable kinetic simulations of
plasmas that extend to macroscopic, even thermodynamic time
scales.

• PHYSICS IS SYMMETRY AND CONSERVATION LAWS:
Existing simulation methods for dissipative systems are largely based
on instantaneous error estimation and typically fail in achieving
long-time-scale stability and accuracy.

• MATHEMATICS COULD HELP: The recent interest towards and
development of structure-preserving techniques reflects the future of
kinetic simulation algorithms for plasmas and could be the game
changer.

1



Table of contents

1. The metriplectic framework

2. Metriplectic formulation of collisional kinetic theory

3. Metriplectic integrator for the Landau collision operator

4. Summary

2



The metriplectic framework



Metriplectic framework describes dynamics of functionals

The dynamics of a functional Q of fields u = (u1, . . . , um) is determined
in terms of a Hamiltonian H, a Poisson bracket { · , · }, an entropy
functional S, and a metric bracket ( · , · ) according to

dQ

dt
= {Q,F}+ (Q,F ),

where F = H − S is a generalized free-energy functional akin to the
Gibb’s free energy [1].
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The First and Second Laws of Thermodynamics are satisfied

Impose (i) (H,A) = 0 and (ii) {S,A} = 0 for arbitrary A as well as (iii)
(A,A) ≤ 0. Then (i) and (ii) imply the conservation of the Hamiltonian

dH

dt
= {H,F}+ (H,F ) = −{H,S}+ (H,F ) = 0,

the condition (iii) implies the dissipation of the free energy

dF

dt
= {F, F}+ (F, F ) = (F, F ) ≤ 0,

and the conditions (i), (ii), and (iii) all together imply the production of
entropy

dS

dt
= {S, F}+ (S, F ) = (S,H − S) = −(S, S) ≥ 0.
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The brackets are bilinear functionals

The generic forms for the brackets involve an anti-self-adjoint operator
J(u), a self-adjoint operator G(u), and functional derivatives

{A,B} =

∫
δA

δuα
Jαβ(u)

δB

δuβ
dx,

(A,B) =

∫
δA

δuα
Gαβ(u)

δB

δuj
dx.

The functional derivative δA/δuα is defined via the Fréchet derivative

d

dε
A[u1, . . . , uα + εvα, . . . , um]

∣∣
ε=0

=

〈
δA[u]

δuα
, vα
〉
,

with 〈 · , · 〉 denoting an appropriate inner product. Note that the
functional derivative δA/δuα is an element of the dual space, while the
field uα is an element of the primal space. This has consequences for
discretization.
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Existence of an equilibrium state

Remember that the dynamics is given by

dQ

dt
= {Q,F}+ (Q,F ),

For an equilibrium state ueq to exists, time-evolution of all functionals
must vanish when evaluated with respect to ueq. This leads to so-called
Energy-Casimir principle

δF [ueq] +
∑
i

λiδCi[ueq] = 0,

where Ci are Casimirs ({Ci, A}+ (Ci, A) = 0 for arbitrary A) of the
total metriplectic system and λi act as Lagrange multipliers that are
uniquely determined from the initial state of the system.
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Metriplectic formulation of
collisional kinetic theory



Vlasov-Maxwell-Landau system

The dynamic equations push the distribution functions and the
electromagnetic fields

∂fs
∂t

= −v · ∇fs −
es
ms

(E + v ×B) · ∂fs
∂v

+ C[fs],

1

c2
∂E

∂t
= ∇×B − µ0

∑
s

es

∫
vfs dv,

∂B

∂t
= −∇×E,

The static, constraining equations serve as initial conditions

ε0∇ ·E =
∑
s

es

∫
fs dv, ∇ ·B = 0

The collision operator C[fs], provides dissipation

C[fs] =
∑
s′

css′

ms

∂

∂v
·
∫

Q(v − v′) ·
(
fs′(v

′)

ms

∂fs
∂v
− fs(v)

ms′

∂fs′

∂v′

)
dv′

with Q(ξ) = |ξ|−1(1− ξ̂ξ̂) and css′ = e2
se

2
s′ ln Λ/(8πε2
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Hamiltonian contribution

Poisson bracket consists of single-particle, interaction, and
electromagnetic contributions

{A,B} =
∑
s

∫
fs

[
δA
δfs

,
δB
δfs

]
s

dxdv

+
∑
s

∫
esfs
ε0ms

(
∂

∂v

δA
δfs
· δB
δE
− ∂

∂v

δB
δfs
· δA
δE

)
dxdv

+ ε−1
0

∫ (
∇× δA

δE
· δB
δB
−∇× δB

δE
· δfa
δB

)
dx

Hamiltonian is a sum of kinetic and electromagnetic energy

H[f,E,B] =
∑
s

∫
msv

2

2
fsdxdv +

1

2

∫ (
ε0E

2 + µ−1
0 B2

)
dx

Single-particle non-canonical Poisson bracket for species s

[f, g]s =
1

ms

(
∇f · ∂g

∂v
−∇g · ∂f

∂v

)
+
esB

m2
s

· ∂f
∂v
× ∂g

∂v
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Dissipative contribution

The bracket corresponding to Landau collision operator [1, 2]

(A,B) =
∑
s,s′

∫ ∫
Γss′(A; z, z′) ·Wss′(z, z

′) · Γss′(B; z, z′)dzdz′

Entropy functional corresponding to Maxwell-Boltzmann statistics

S[f ] = −
∑
s

∫
fs(z) ln (fs(z)) dz

Details for vector Γ and matrix W in the bracket

Γss′(A; z, z′) =
1

ms

∂

∂v

δA
δfs(z)

− 1

ms′

∂

∂v′
δA

δfs′(z′)

Wss′(z, z
′) = − 1

2css′δ(x− x
′)fs(z)fs′(z

′)Q(v − v′)

again with Q(ξ) = |ξ|−1(1− ξ̂ξ̂) and css′ = e2
se

2
s′ ln Λ/(8πε2

0).
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Invariants of the Vlasov-Maxwell-Landau system

The Gauss’s laws: for arbitrary functions gE(x) and gB(x), one finds the
Casimir invariants

CE =

∫
gE(x)

(
ε0∇ ·E −

∑
s

es

∫
fs dv

)
dx

CB =

∫
gB(x)∇ ·Bdx

If CE and CB are zero initially, they will remain so later on. The total
momentum functional

P =
∑
s

ms

∫
vfsdz + ε0

∫
E ×Bdx

is conserved if the Gauss’s law for E holds. The total energy, the
Hamiltonian H is conserved by construction. Also mass of each species is
conserved.
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Metriplectic integrator for the
Landau collision operator



Single species Landau operator

The collisional evolution of a distribution function in velocity space is
given by the nonlinear Fokker-Planck equation

∂f

∂t
=

∂

∂v
·
∫
Q(v − v′) ·

(
f(v′)

∂f

∂v
− f(v)

∂f

∂v′

)
dv′ (1)

With entropy S[f ] = −
∫
f ln(f)dv, the corresponding bracket is

(A,B) = −1

2

∫ ∫
Γ(A; v, v′) ·W (v, v′) · Γ(B; v, v′)dvdv′ (2)

with the vector Γ and the tensor W defined as

Γ(A; v, v′) =

(
∂

∂v

δA
δf(v)

− ∂

∂v′
δA

δf(v′)

)
(3)

W (v, v′) = f(v)f(v′)Q(v − v′). (4)

The bracket has three Casimirs {M,P, E} =
∫
{1, v, |v|2}fdv, i.e., mass

and kinetic momentum and energy. The first two follow from Γ(M) = 0

and Γ(P) = 0, and the last from Γ(E) = 2(v − v′) and ξ ·Q(ξ) = 0.
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Discretize the system with finite-elements

We consider a finite-dimensional space Qh(Ω) ⊂ L2(Ω) spanned by a set
of basis functions {φi}Ni=1 and write the discrete distribution function
fh ∈ Qh(Ω) in this space as

fh =

N∑
i=1

f̂i(t)φi(v). (5)

Functionals A evaluated with respect to fh become functions
A[fh] = Â(f̂) of the degrees of freedom f̂ = (f̂1, . . . , f̂N ).

Functional derivatives evaluated with respect to fh become

δA[fh]

δf
=

N∑
i,j=1

∂Â

∂f̂i
M−1
ij φj , (6)

where Mij =
∫
φi(v)φj(v)dv is the mass matrix for the basis φj .
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Obtaining the discrete bracket

Insert the expressions for fh and δA[fh]/δf into the continuous bracket
to obtain

(A,B)[fh] = ∇ÂM−1 LM−1∇B̂ ≡ ∇ÂG∇B̂ ≡ (Â, B̂)h. (7)

The gradient refers to ∇ = ∂/∂f̂ and the elements of the Landau matrix
L are given by

Lij(f̂) = −1

2

∫ ∫ (
∂φi
∂v
− ∂φi
∂v′

)
· fh(v)Q(v − v′)fh(v′) ·

(
∂φj
∂v
− ∂φj
∂v′

)
dvdv′ (8)
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Choose a space of at least second order polynomials

Choose the space Qh(Ω) so that {1, v, |v|2} ∈ Qh(Ω). Now the mass,
momentum, and energy functionals evaluated with respect to fh become

M[fh] =

N∑
i=1

f̂i

∫
φidv = 1̂Mf̂ ≡ M̂(f̂) (9)

P[fh] =

N∑
i=1

f̂i

∫
vφidv = v̂Mf̂ ≡ P̂ (f̂) (10)

E [fh] =

N∑
i=1

f̂i

∫
|v|2φidv = êMf̂ ≡ Ê(f̂) (11)

with 1̂, v̂, and ê the degrees of freedom for the functions 1, v, and |v|2.
Note that M̂(f̂), P̂ (f̂), and Ê(f̂) are linear functions of f̂ .
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Casimir invariants of the discrete Landau bracket

The Landau matrix L(f̂) has the important properties

1̂L = 0, v̂ L = 0, êL = 0 (12)

This implies that the quantities M̂(f̂), P̂ (f̂), and Ê(f̂) are Casimirs:

(M̂, B̂)h = ∇M̂ G∇B̂ = 1̂MM−1LM−1∇B̂ = 1̂LM−1∇B̂ = 0 (13)

(P̂ , B̂)h = ∇P̂ G∇B̂ = v̂MM−1LM−1∇B̂ = v̂LM−1∇B̂ = 0 (14)

(Ê, B̂)h = ∇ÊG∇B̂ = 1̂MM−1LM−1∇B̂ = êLM−1∇B̂ = 0 (15)

Since M̂(f̂), P̂ (f̂), and Ê(f̂) are linear functionals, they are linear
Casimirs.
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Temporal integration with "Discrete Gradients"

In terms of free energy F̂ (f̂) = Ê(f̂)− Ŝ(f̂), the equations of motion for
the degrees of freedom are

df̂

dt
= (f̂ , F̂ )h = G∇F̂

We use a so-called “discrete gradient” ∇̄ of a differentiable function
h : Rm → R with the property

(x1 − x0) · ∇̄h(x0, x1) = h(x1)− h(x0),

∇̄h(x, x) = ∇h(x).
(16)

and introduce temporal discretization according to

f̂1 − f̂0

∆t
= G(f̂1/2) ∇̄F̂ (f̂0, f̂1), (17)

where f̂1/2 = (f̂0 + f̂1)/2.
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Dissipation of free-energy, production of entropy, and preser-
vation of the Casimir invariants

The negative-semidefiniteness of G implies dissipation of free energy

F̂ (f̂1)− F̂ (f̂0)

∆t
= ∇̄F̂ (f̂0, f̂1)G(f̂1/2) ∇̄F̂ (f̂0, f̂1) ≤ 0 (18)

The linear Casimirs Ĉ ∈ {M̂(f̂), P̂ (f̂), Ê(f̂)} satisfy ∇ĈG = 0, and
(f̂1 − f̂0) · ∇Ĉ = Ĉ(f̂1)− Ĉ(f̂0), and are thus preserved

Ĉ(f̂1)− Ĉ(f̂0)

∆t
= ∇Ĉ G(f̂1/2) ∇̄F̂ (f̂0, f̂1) = 0 (19)

Entropy production is guaranteed via dissipation of the free energy F̂ and
preservation of Ê via

Ŝ1 − Ŝ0 = Ê1 − F̂1 − Ê0 + F̂0 = F̂0 − F̂1 ≥ 0.

17



Summary



Kinetic descriptions of plasmas appear to be metriplectic

• The Vlasov-Maxwell-Landau system is metriplectic.

• The collisional electrostatic gyrokinetic Vlasov-Poisson-Landau
system is metriplectic.

• Most likely the collisional electromagnetic gyrokinetic
Vlasov-Maxwell-Landau system is metriplectic as well. This is
work in progress.
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Can we find metriplectic discretization techniques for the
Vlasov-Maxwell-Landau system and its gyrokinetic versions?
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Metriplectic formulation of
collisional electrostatic
gyrokinetics



Collisional electrostatic gyrokinetic equations [3]

Dynamic kinetic equation and static Gauss’ law

∂Fs
∂t

+ {Fs, Hgy
s }gc

s =
∑
s̄

Cgy
ss̄(Fs, Fs̄), (20)

∇ ·E = 4π(ρgy −∇ · P ), (21)

Guiding-center Poisson bracket

{F,G}gc =
e

mc

(
∂F

∂θ

∂G

∂µ
− ∂F

∂µ

∂G

∂θ

)
− cb

eB∗‖
· (∇∗F ×∇∗G)

+
B∗

mB∗‖
·
(
∇∗F ∂G

∂v‖
− ∂F

∂v‖
∇∗G

)
, (22)

Gyrocenter Hamiltonian Hgy = Kgy + eϕ, and polarization density

P = −δK/δE, K(E) =
∑
s

∫
Kgy
s Fs dz

gc
s , (23)



Gyrocenter kinetic energy Kgy contains the nasty details

The function Kgy, appearing in the Hamiltonian Hgy = Kgy + eϕ, is the
gyrocenter kinetic energy, which may be written entirely in terms of the
electric field as

Kgy =
1

2
mv2
‖ + µ|B| − e〈Jρo ·E(X + ερo)K〉

− e2

2µ|B|
〈Jρ̃o ·E(X + ερo)ρ̃o ·E(X + ρo)K〉

− e2

2mω2
c

b · 〈Ẽ(X + ρo)× IẼ(X + ρo)〉. (24)

Here 〈·〉s = (2π)−1
∫ 2π

0
· dθs denotes the average with respect to the

species-s gyroangle, tildes denote the fluctuating part of a
gyroangle-dependent quantity, I = ∂−1

θ is the gyroangle antiderivative,
J·K =

∫ 1

0
· dε, and ρo is the zero’th order (gyroangle-dependent)

gyroradius vector.



The electrostatic gyrocenter collision operator Cgy
ss̄ (Fs, Fs̄)

Define the position ys(z) = X + ρos, the relative velocity

wgy
ss̄ = {ys, Hgy

s }gc
s (z)− {ys̄, Hgy

s }
gc
s̄ (z̄), (25)

the scaled projection matrix

Qgy
ss̄(z, z̄) =

P(wgy
ss̄(z, z̄))

wgy
ss̄(z, z̄)

, P(ξ) = I− ξξ

|ξ|2
, (26)

and the three-component collisional flux vector

γgy
ss̄ =

∫
δgy
ss̄(z, z̄)Qgy

ss̄(z, z̄) ·Agy
ss̄(z, z̄) dz̄gc

s̄ , (27)

where Agy
ss̄(z, z̄) = Fs(z){ȳs̄, Fs̄(z̄)}gc

s̄ − Fs̄(z̄){ys, Fs(z)}gc
s , and

δgy
ss̄(z, z̄) = δ(ys − ȳs̄). Defining the coefficient css̄ = 4πe2

se
2
s̄ ln Λ, the

collision operator can then be expressed as

Cgy
ss̄(Fs, Fs̄) = −css̄

2

〈
{ys,i, γgy

ss̄,i}
gc
s

〉
s
. (28)



Metriplectic structure of collisional electrostatic gyrokinetics

Hamiltonian functional

HGK =
∑
s

∫
Hgy
s Fs dz

gc
s −

1

8π

∫
|E|2 d3x (29)

Entropy functional

SGK = −
∑
s

∫
Fs(z) lnFs(z)dzgc

s . (30)

Metriplectic dynamics of arbitrary functionals Q[F ] are given by

dQ
dt

= {Q,FGK}GK + (Q,FGK)GK, (31)

where FGK = HGK − SGK denotes the generalized free-energy functional
that is dissipated via increase in the system entropy.



Hamiltonian contribution

The dynamical field in this system is F . The electrostatic potential must
be regarded as the unique functional of the distribution function given by
solving the gyrokinetic Poisson equation, i.e. ϕ = ϕ[F ].

The expression for the functional Poisson bracket of two functionals
A(F ) and B(F ) is then given by

{A,B}GK =
∑
s

∫ {
δA
δFs

,
δB
δFs

}gc

s

Fs dz
gc
s , (32)



Metric contribution

The symmetric bracket corresponding to the collision operator [4]

(A,B)GK = −
∑
ss̄

css̄
4

∫∫
Γgy
ss̄(A) ·Wgy

ss̄ · Γ
gy
ss̄(B)dzgc

s̄ dz
gc
s , (33)

The vector Γgy
ss̄(A) is defined

Γgy
ss̄(A) =

{
ys̄,

δA
δFs̄

}gc

s̄

(z̄)−
{
ys,

δA
δFs

}gc

s

(z), (34)

and the symmetric, positive semi-definite tensor Wgy
ss̄ is

Wgy
ss̄ = δgy

ss̄(z, z̄)Qss̄(z, z̄)Fs(z)Fs̄(z̄), (35)

with δgy
ss̄ and Qss̄ as before.



Energy conservation law

Since δHGK/δFs = Hgy
s , we have Γgy

ss̄(HGK) = wgy
ss̄. Further, since

wgy
ss̄ ·W

gy
ss̄ = 0, the Hamiltonian functional is a Casimir of the metric

bracket

(HGK,B)GK =
∑
ss̄

css̄
4

∫∫
wgy
ss̄ ·W

gy
ss̄ · Γ

gy
ss̄(B)dzgc

s dz̄
gc
s̄ = 0. (36)

Entropy, on the other hand, is a Casimir of the functional Poisson bracket

{B,SGK}GK = 0. (37)

Thus, with FGK = HGK − SGK, the Hamiltonian is conserved

dHGK

dt
= {HGK,FGK}GK + (HGK,FGK)GK = 0 (38)



Angular momentum conservation law

In axisymmetric B, the total toroidal angular momentum

Pφ =
∑
s

∫
pφs(z)Fs(z)dzgc

s , (39)

with pφs the single-particle guiding-center toroidal canonical momentum,
is a Casimir of the metric bracket.

Since δPφ/δFs = pφs, we have Γgy
ss̄(Pφ) = ez × (ȳs̄ − ys) so that

(Pφ,B)GK =
∑
ss̄

css̄
4

∫∫
ez × (ȳs̄ − ys) ·Wgy

ss̄ · Γ
gy
ss̄(B)dzgc

s dz̄
gc
s̄ = 0,

which follows from the term(ȳs̄ − ys) δgy
ss̄(z, z̄) in the integrand. Thus,

with FGK = HGK − SGK, the toroidal angular momentum is conserved

dPφ
dt

= {Pφ,FGK}GK + (Pφ,FGK)GK = 0 (40)
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